Differential Nutrient Limitation of Soil Microbial Biomass and Metabolic Quotients (qCO2): Is There a Biological Stoichiometry of Soil Microbes?

نویسندگان

  • Wyatt H. Hartman
  • Curtis J. Richardson
چکیده

BACKGROUND Variation in microbial metabolism poses one of the greatest current uncertainties in models of global carbon cycling, and is particularly poorly understood in soils. Biological Stoichiometry theory describes biochemical mechanisms linking metabolic rates with variation in the elemental composition of cells and organisms, and has been widely observed in animals, plants, and plankton. However, this theory has not been widely tested in microbes, which are considered to have fixed ratios of major elements in soils. METHODOLOGY/ PRINCIPAL FINDINGS To determine whether Biological Stoichiometry underlies patterns of soil microbial metabolism, we compiled published data on microbial biomass carbon (C), nitrogen (N), and phosphorus (P) pools in soils spanning the global range of climate, vegetation, and land use types. We compared element ratios in microbial biomass pools to the metabolic quotient qCO2 (respiration per unit biomass), where soil C mineralization was simultaneously measured in controlled incubations. Although microbial C, N, and P stoichiometry appeared to follow somewhat constrained allometric relationships at the global scale, we found significant variation in the C∶N∶P ratios of soil microbes across land use and habitat types, and size-dependent scaling of microbial C∶N and C∶P (but not N∶P) ratios. Microbial stoichiometry and metabolic quotients were also weakly correlated as suggested by Biological Stoichiometry theory. Importantly, we found that while soil microbial biomass appeared constrained by soil N availability, microbial metabolic rates (qCO2) were most strongly associated with inorganic P availability. CONCLUSIONS/ SIGNIFICANCE Our findings appear consistent with the model of cellular metabolism described by Biological Stoichiometry theory, where biomass is limited by N needed to build proteins, but rates of protein synthesis are limited by the high P demands of ribosomes. Incorporation of these physiological processes may improve models of carbon cycling and understanding of the effects of nutrient availability on soil C turnover across terrestrial and wetland habitats.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soil microbial properties and nutrients in pure and mixed Chinese fir plantations

An investigation on soil organic carbon,total N and NO3--N,available microbial biomass C,N and basal respiration and metabolic quotients(qCO2)was conducted to compare diferences in soil microbial properties and nutrients between 1 5-year-old pure Chi— nese fir(Cunninghamia lanceolata)and two mixed Chinese fir plantations(mixed plantations with A/nus cremastogyne,mixed plantations with Kalopanax...

متن کامل

Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems

How soil microbes assimilate carbon-C, nitrogen-N, phosphorus-P, and sulfur-S is fundamental for understanding nutrient cycling in terrestrial ecosystems. We compiled a global database of C, N, P, and S concentrations in soils and microbes and developed relationships between them by using a power function model. The C:N:P:S was estimated to be 287:17:1:0.8 for soils, and 42:6:1:0.4 for microbes...

متن کامل

اثر شوری بر برخی شاخص‌های میکروبی خاک در حضور و عدم حضور ریشه‌های زنده گیاه

Similar to plants, soil salinity may reduce microbial growth and activities in different ways. The aim of this study was to determine the effects of different levels of salinity on some microbial indices in the presence and absence of plant's living roots. In this study, five levels of salinity using NaCl, CaCl2, MgCl2 and KCl and three soil media (soil with no plant, soil cultivated with wheat...

متن کامل

Microbial respiration per unit microbial biomass depends on litter layer carbon-to-nitrogen ratio

Soil microbial respiration is a central process in the terrestrial carbon (C) cycle. In this study, I tested the effect of the carbon-to-nitrogen (C : N) ratio of soil litter layers on microbial respiration in absolute terms and per unit microbial biomass C. For this purpose, a global data set on microbial respiration per unit microbial biomass C – termed the metabolic quotient (qCO2) – was com...

متن کامل

Effects of Plant Diversity, Functional Group Composition, and Fertilization on Soil Microbial Properties in Experimental Grassland

BACKGROUND Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant dive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013